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ABSTRACT

In this paper we address the problem of multiview color
consistency. We propose to use a graph model of 3d posi-
tions obtained using matched dense feature points. We define
an energy functional on this model which captures relation-
ship of the colors across views while also imposing a smooth-
ness cost to obtain optimal colors for the 3d positions. We
finally recolorize the images using these optimal colors at re-
projected co-ordinates. An important feature of the proposed
method is that it does not use a reference view. Finally we
present a qualitative evaluation of our method with methods
that use a reference view.

Index Terms— Color consistency, colorization, multi-
view colors.

1. INTRODUCTION

In recent times several works on 3d reconstruction from
image-sets have been published [1]. 3D reconstruction
pipelines generally involve a set of images from different
view points, from which 3D models of the environment are
generated. In computer graphics community it is referred to
as Image-based-modeling. Most of the applications of it is
modeling and visualizing an environment in 3d. In this work
we explore the possibility of achieving color synchronization
across views by use of 3d model of the scene.

Color blending of spatially adjacent views is a commonly
employed technique to alleviate the problem of inconsistency
in color. However in case the images have different color
tones (as shown in Fig.1), no amount of blending can give
a photo-realistic effect.

Several approaches have been proposed for color consis-
tency between a pair of images. Xu et al. [2] present a review
of various approaches for color correction of a pair of image.
Of particular interest was the approach by Tai et al. [3]. They
make use of the EM algorithm for obtaining probabilistic seg-
mentation of the image. Then using correspondences between
the images, they propose to map the Gaussian components be-
tween the images and transfer their colors using the Reinhard
color transfer algorithm [4].

A simple way to extend the pairwise colorization to mul-
tiple images is to select one of the view as a reference view.

Using the colors in the reference view transfer the colors to
other views. These approaches are sensitive to the reference
frame chosen. The reference view may not contain all the col-
ors shades present in the scene causing unusual colorization
of the target image.

To the best of our knowledge, until now only one study
(by Moulon et al. [5]) attempts a global all view color con-
sistency. They starts by finding common pixels in the image
sequence Ii, i = 1, · · · , n. Histograms are used to model
distribution of colors between matched regions. A gain gi and
offset oi is used per image to normalize the shutter speed and
the aperture time which are determined by an optimization
framework. Optimal gi and oi are used for intensity transfor-
mation of the original sequence. A drawback of their scheme
is that it takes a view as a reference view. This might not be
suitable if the views are very different from each other. Yet
another issue with the formulation is that they assume the in-
tensity of the patch in image i is related to that of correspond-
ing patch from image j with an affine function. This may not
necessarily be true. Further this method assumes that all the
intensities can be transferred independently. It does not take
into account the intensities of the neighboring pixels for the
color transfer.

The inputs to our system are a set of images of different
appearance and unknown capture conditions. The objective of
this project is to re-colorize the images and ensure consistency
of colors across multiple views (see Fig. 1). An important
feature of the proposed method is that it does not set a view
as a reference view to recolor other views. Instead it relies
on the 3d reconstruction to choose optimal colors at dense
keypoints.

2. PROPOSED APPROACH

We propose a scheme for global color consistency. The most
prominent feature of the scheme is that it does not require a
reference view. We present an approach that maps the visible
2d points into 3d positions. Consistency of color is ensured
by the proposed local photometric consistency optimization
process on the 3d points. The first step is to extract EXIF
information from the images to obtain the calibration param-
eters and relative camera pose. A sparse set of keypoints are
initially mapped to their 3d positions. Details of this can be



(a) View 0 (b) View 1 (c) View 23

(d) View 26 (e) View 27 (f) View 28

Fig. 1: Showing selected views of the dataset. Inconsistency
in color. For example, shades of blue of the chairs, shade of
back wall are different across views.

found in section 2.1. Then these are repeatedly expanded to
nearby pixel correspondences to obtain a dense set of rect-
angular patches (see section 2.2). Once we have a dense set
of matches in multiple views, we formulate an optimization
problem to ensure local photometric consistency on the 3d
points (section 2.3). With a consistent set of colors we recol-
orize the image based on a successful colorization frame work
presented by Levin et al. [6].

2.1. Reconstruction of Sparse Geometry

The objective here is to geometrically register a set of images
and extract the 3d information for a set of interest points. The
approach proceeds by detecting interest keypoints in each im-
age. SIFT keypoints [7] were used to find features in each
images because of its invariance towards image transforma-
tion and varying lightening conditions. Matches of keypoint
across pair of images is found. And then finally a robust struc-
ture from motion (SfM) procedure is used to recover the cam-
era parameters. We rely on the “Bundler“1 system for struc-
ture from motion. Bundler takes a set of images, image fea-
tures, and image matches as input, and produces a 3D recon-
struction of the (sparse) scene geometry and camera pose as
output. The system is described in [8, 9] and uses the Sparse
Bundle Adjustment package of Lourakis and Argyros [10] as
the underlying optimization engine.

2.2. Multi-view Dense Stereo

Furukawa and Ponce [11] proposed a technique that takes cal-
ibrated set of images and produces dense set of patches cov-
ering the surfaces visible in input images. They implemented
multi-view stereopsis as a match, expand and filter procedure.
It essentially spreads the initial matches to nearby pixels to
obtain a dense set of patches. PMVS2 is a multi-view stereo

1http://www.cs.cornell.edu/~snavely/bundler/
2http://www.di.ens.fr/pmvs/

software that takes a set of images and camera parameters,
then reconstructs 3D structure of an object or a scene visible
in the images.

2.3. Local Volumetric Photo-consistency

LetP0, P1, . . . , PN denoteN 3d points obtained using PMVS
software as noted in section 2.2. A point Pi is visible in a set
of views (which is a subset of all available views) denoted by
VPi . v

(Pi)
j j = 1 . . . |VPi | are the elements of the set VPi . Let

rsi denote the projection of point Pi on the view s (s ∈ VPi ).
From the basic principles of projective geometry we know
that –

rsi = MsPi

WhereMs denote the 3×4 projection matrix correspond-
ing to view s. Note that the projection matrices can be readily
obtained using the camera parameters and camera pose ob-
tained using the bundler package (SfM) as described in sec-
tion 2.1. In our approach we achieve color synchronization
across views by computing an optimal set of colors for the 3d
points. For this purpose we propose to use a graph model.
Further we define an energy functional over the graph model.
Finally we show that the proposed combinatorial optimiza-
tion framework reduces to the labeling problem, which is an
NP-hard problem.

As stated earlier, we model the 3d arrangement of points
as a graph model G = (P,E). Let the 3d points be the
nodes of the graph. Thus, P = {Pi| i = 0, . . . , N}. The
edge set of the graph contains the k nearest neighbors of the
nodes. ThusEi = {k nearest neighbors ofPi}. E = {Ei| i =
0, . . . , N}. For efficiency we find the approximate nearest
neighbors (ANN) using kd-tree package of Arya et al. [12].
Let li (li ∈ {0, 1, . . . , 255}) denote the label of the node as-
sociated with Pi.

We define the Energy functional for the graph G as –

∆(G) = ξ

N∑
i=0

Φ(Pi, li) +
∑

(i,j)∈E

Ψ(li, lj) (1)

Where, Φ(Pi, li) is the cost of setting the node associated
with Pi as l. Ψ(li, lj) is the smoothness penalty with respect
to its neighbors in the graph. We define the cost function as
follows.

Φ(Pi, li) =
∑

s∈VPi

(
c(rsi )− li

)
= |VPi |

[ 1

|VPi |
( ∑
s∈VPi

c(rsi )
)
− li

]
(2)

c(rsi ) is the color intensity of one of the channels. Setting
ξ = 1

|VPi |
. Also observe that the internal first term in equa-

tion 2 is the average observed color of Pi. For robustness we



compute this average in La∗b∗ color space instead of usual
RGB space and then reconvert the averages to RGB space.

Ψ(li, lj) =

{
λi,j li = lj
0 otherwise (3)

The objective is to find a labeling (ie. set of labels associ-
ated with every node) such that the energy is minimized. It is
a well known fact that computing the minimizer of equation 1
is a NP-hard problem when number of possibilities of a label
is greater than 2 [13]. Recently, Gridchyn and Kolmogorov
[14] proposed an efficient technique to minimize an energy
function with Potts smoothness term (equation 3). We rely on
this optimization engine3 to find a minimizer for equation 1.

Minimizing the energy will give labellings that is as close
as possible to the original reprojected colors and also shall
give spatial smoothness of colors. The labels in this case de-
note the intensities of a color channel. Thus, similar energy
functionals need to be minimized for each of the color chan-
nels (viz. R,G,B).

Finally we set the optimal labels, as color intensities for
each of the reprojected points on the images. Thus we obtain
images with optimal set of colors at dense feature points.

2.4. Re-colorization

Once we obtain a globally consistent set of colors at the in-
terest points as described in section 2.3, we re-colorize each
of the images using these newly obtained color values at in-
terest points. The re-colorization framework is inspired from
Levin et al. [6]. The algorithm is given as input the gray scale
intensity image Y (x, y) at every (x, y). In addition to that it
has color information at a few interest points. The algorithm
outputs the two color channels U(x, y) and V (x, y) at every
(x, y). To simplify the notation we use boldface r to denote
the pair (x, y).

Next we define an objective function which imposes that
the two neighboring pixels r and g have similar colors if their
intensities are similar. Thus, we wish to minimize the differ-
ence between the color U(r) at pixel r and weighted average
of the colors at neighboring pixels :

J(U) =
∑
r

(
U(r)−

∑
g∈N(r)

wrgU(g)
)2

Where wrg is a weighting function that sums to one, large
when Y (r) is similar to Y (g) and small when two intensities

are different. wrg ∝ e−
(Y (r)−Y (g))2

2σ2 . Such functions are also
referred to as affinity function in the literature. By inspec-
tion the cost function J(U) can be expressed in a quadratic
form, ie. J(U) = UT (D−W )U . Where W is an npixels×
npixels matrix whose elements Wrg denote the weights wrg .
D is a diagonal matrix containing row-wise sums. Note that

3Available at http://pub.ist.ac.at/~vnk/software.html

W is a sparse matrix with any row (or column) r of it con-
taining non-zero entries in positions which are neighbors of
pixel r in the image. To recolorize the image Is (ie. view s)
we minimize Js(U) and Js(V ) subject to the constraints that
U(cs,j) = ps,j and V (cs,j) = qs,j . Js(U) and Js(U) denote
the cost functions for image Is. It is to be noted that ps,j and
qs,j are known constants representing theU and V color com-
ponents respectively at jth interest points of sth view. Note
that these were obtained as described in section 2.3. For an
image Is, the problem can be stated as :

minimize
U

UT
s (Ds −Ws) Us

subject to U(cs,j) = us,j , j = 1 . . . ns

Where, Us represents the vectorized U color values of Is.
The equality constraint represents the known color values at
interest points. It can be written in matrix form as AU = u.
A is a large sparse matrix of size ns × npixels. This can be
re-written as a standard quadratic programming problem with
equality constraints. Define B = 2(D −W ).

Levin et el. [6] has suggested to find the optimum value of
the above function by use of graph cuts. However, since this
is a quadratic program with equality constraints, it can be re-
duced to a problem of solving system of linear equations. We
provide the necessary and sufficient conditions under which
an optimal solution can be computed. Since objective func-
tion and the constraints are differentiable and continuous the
solution U∗ to this system satisfies the Karush-Kuhn-Tucker
(KKT) conditions [15]. The U∗ that minimizes the above ob-
jective must satisfy the conditions of primal feasibility and
zero gradient of the Lagrangian.

AU∗ = u (4)

∂L(U, ν)

∂U
= BTU∗ +AT ν∗ = 0 (5)

L(U, ν) = UTBU+νT (AU−u) is the Lagrangian func-
tion of the primal optimization problem. The equation 4 and
equation 5 can be written up together as a matrix equation.[

A 0
B AT

]
×
[
U∗

ν∗

]
=

[
u
0

]
This equation is a large square sparse system of linear

equation. The optimal U can be obtained by solving the linear
equation. An iterative method for solution of a sparse linear
equation like the Generalized minimum residual method can
be employed to obtain the optimal U . Following the same ex-
act principle an optimum V for Is can also be obtained for
re-colorization of Is.

3. RESULTS

We implement our method and apply it to a variety of exam-
ples on an Intel i7 3.4 Ghz workstation. However due to space



(a) View 0 (b) View 2 (c) View 26

(d) View 0 (e) View 15 (f) View 27
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(j) View 0 (k) View 26 (l) View 28

Fig. 2: Selected patches of recolorized Images. 1st row show-
ing the coke dispenser. 2nd row showing a set of chairs. 3rd

row showing the background wall and 4th row showing a col-
orful sticker on the dispenser.

limitations we present only 1 scene (referred to as coke) ex-
ample. It consists of 4 sets of 7 images (2000× 1500 pixels)
all of same scene clicked using a Sony DSC-HX300 camera
under 4 different lightening settings. Upon acceptance of the
paper more results will be available online on our website4.

For our experiments we used k = 4 nearest neighbors for
construction of the nearest neighbor graph of 3d points. For
robustness we use a clipped datacost, thus we use the datacost
as min(Φ(Pi, li), τ). We set τ = 100. We also used a sim-
ple and adaptive technique to set λi,j . If the colors at nodei
and nodej are different we set λi,j as λlow(= 5). For similar
colors we set λi,j as λhigh(= 20). The difference of colors
is quantified as the euclidean distance of the difference of the
2 chrominance channels (threshold = 40 was used). If the
chrominance of the adjacent nodes is very different the nodes
belong to different object and in this case the smoothness con-
straint is to be relaxed, thus we set a lower penalty.

Figure 2 shows some of the interest zone of the recol-

4http://aaa.bbb.com

(a) View 0 (b) View 1 (c) View 23

(d) View 26 (e) View 27 (f) View 28

Fig. 3: Result of adapting pairwise color transfer[4] scheme
onto multiview using view-27 as reference image

orized images from various views. We observe that the color
details are preserved, unlike in the case of color transfer (Fig.
3) where we observe lot of false colorization and loss of color
details. In case of the results obtained using the proposed
method, we observe that the colors of the background wall
(row-3 in Fig.1) are lot similar unlike the original image set
(Fig.1) in which they have different color tones.

We compare the results obtained with the color transfer
by setting one of the views as reference. We selected view-5
as a reference view and transferred the colors to other views.
Since the view had little of red it has resulted in false looking
colors. Since the reference view does not contain enough of
red color, we get false shades of red after color transfer as can
be observed in Fig. 3.

4. CONCLUSION

We present a scheme to re-colorize a set of images from mul-
tiple views in a color consistent way. We obtain a set of con-
sistent colors from dense set of image interest points. A graph
model is defined over the 3d points of the scene. An objec-
tive function is defined with a smoothness penalty which mea-
sures the difference of colors between reprojections of spatial
neighbors. Using these optimal set of consistent colors at re-
projections, we colorize the image.

The proposed approach is different from the one presented
by Moulon et al. [5] is that we do not need a reference view.
Further, unlike Moulon et al., the color transformations are
not restricted by only an affine function. Instead, the coloriza-
tion process iterates until the colors are properly propagated
across the entire image. Experiments and comparisons show
that our method leads to high-quality color consistent across
views.
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