
File: /home/eeuser/Dropbox/HKUST_wo…tion/vanishing_bob_collins.txt Page 1 of 2

From: Robert_T_Collins@IUS5.IUS.cs.cmu.edu
Sent: Monday, October 04, 1999 8:56 AM
To: Steve Seitz
Cc: rcollins@cs.cmu.edu; Robert_T_Collins@IUS5.IUS.cs.cmu.edu
Subject: Re: vanishing points

Hi Steve. All my code was in lisp, but it should be
very easy for the students to implement, depending on what
exactly you want to do. Grouping an arbitrary set of lines
in the image into sets that converge to a vanishing point
requires a fair amount of code. If you are already given the
lines that converge, and just want to compute the vanishing
point, that is easier.

The basic idea (for the easy part) is the following:

1) specify each line's endpoints e1 and e2 in homogeneous coordinates
 e1 = (x1_i , y1_i, w)
 e2 = (x2_i , y2_i, w)
 where the constant w is often taken as 1, but you may want to use
 something else for better numerical conditioning (more on this later).

2) compute a homogenous coordinate vector representing the line
 as the cross product of its two endpoints
 (a_i,b_i,c_i) = e1 X e2
 note that this resulting vector is just the parameters of
 the equation a_i x + b_i y + c_i = 0 of the 2D infinite line
 passing through the two endpoints

3) if you only have two lines, l1 and l2, you can compute a homogeneous
 coordinate vector V representing their point of intersection as
 the cross product of these two line vectors
 V = l1 X l2
 scaling V so that the last coordinate is 1, i.e. (Vx, Vy, 1),
 and you have Vx and Vy as the point in the image that is
 the vanishing point. It is better to leave the vanishing
 point as a homogeneous coordinate vector, however, because the
 vanishing point could be very far off the image, or even at
 infinity (in which case the third component of V is 0, and
 you get a divide by zero when you try to scale).

4) if you have n lines l1, l2, ..., ln, you can get the "best_fit"
 vanishing point as follows:

 4a) form the 3x3 "second moment" matrix M as

 [a_i*a_i a_i*b_i a_i*c_i]
 M = sum [a_i*b_i b_i*b*i b_i*c_i]
 [a_i*c_i b_i*c_i c_i*c_i]

 where the sum is taken for i = 1 to n. Note that M is
 a symmetric matrix

 4b) perform an eigendecomposition of M, using the Jacobi
 method, from numerical recipes in C, for example. (Jacobi
 method is good for finding eigenvalues of a symmetric matrix)
 [I can supply the Jacobi matrix code from NR in C if you like]

 4c) the eigenvector associated with the smallest eigenvalue is
 the vanishing point vector V

One word about numerical conditioning is in order. If you just use
image pixel coordinates directly, the problem will be horribly poorly
conditioned. There is a good paper by Hartley on this topic, title
something like "In defense of the Eight-point algorithm." If your
lines are spread out throughout the image, you can get approximately
the kind of well-conditioned approach he mentions by doing the
following.

 1) translate by (-imageX/2, -imageY/2) so that (0,0) is in the

File: /home/eeuser/Dropbox/HKUST_wo…tion/vanishing_bob_collins.txt Page 2 of 2

 center of the image [I think Hartley's conditioning method would
 take the center of mass of the line endpoints as the origin].

 2) Scale coordinates so that the magnitude of all image point
 homogeneous coordinates is roughly 1 [Hartley says how to do
 this exactly, in his paper]. I used to do it approximately
 by just setting the constant w, mentioned during the first
 step of this algorithm, to be equal to half the image size
 in pixels. So if you had a 256x256 image, then you would
 have w = 128. IF the image width and height aren't the same,
 just take the average or something, before dividing by two.

--Bob

