File: /nome/eeuser/Dropbox/HKUST wo...tion/vanishing_bob_collins.txt

Page 1 of 2

From: Robert T Collins@IUS5.IUS.cs.cmu.edu

Sent: Monday, October 04, 1999 8:56 AM

To: Steve Seitz

Cc: rcollins@cs.cmu.edu; Robert T Collins@IUS5.IUS.cs.cmu.edu
Subject: Re: vanishing points

Hi Steve. A1l my code was in lisp, but it should be

very easy for the students to implement, depending on what
exactly you want to do. Grouping an arbitrary set of lines
in the image into sets that converge to a vanishing point
requires a fair amount of code. If you are already given the
lines that converge, and just want to compute the vanishing
point, that is easier.

The basic idea (for the easy part) is the following:

1) specify each line's endpoints el and e2 in homogeneous coordinates
el = (x1. i, yl i, w)
e2 = (x2.1i, y2.1i, w)
where the constant w is often taken as 1, but you may want to use

something else for better numerical conditioning (more on this later).

2) compute a homogenous coordinate vector representing the line
as the cross product of its two endpoints
(ai,b i,c i) = el X e2
note that this resulting vector is just the parameters of
the equation a i x + b i y + c i = 0 of the 2D infinite line
passing through the two endpoints

3) if you only have two lines, 11 and 12, you can compute a homogeneous
coordinate vector V representing their point of intersection as
the cross product of these two line vectors

V=11X12
scaling V so that the last coordinate is 1, i.e. (Vx, Vy, 1),
and you have Vx and Vy as the point in the image that is
the vanishing point. It is better to leave the vanishing
point as a homogeneous coordinate vector, however, because the
vanishing point could be very far off the image, or even at
infinity (in which case the third component of V is 0, and
you get a divide by zero when you try to scale).

4) if you have n lines 11, 12, ..., ln, you can get the "best fit"
vanishing point as follows:

4a) form the 3x3 "second moment" matrix M as

[a i*ai a i*b i a i*c i]
M=sum [a i*b i b i*b*i b i*c i]
[ai*c i b i*c i c i*c i]

where the sum is taken for i = 1 to n. Note that M is
a symmetric matrix

4b) perform an eigendecomposition of M, using the Jacobi
method, from numerical recipes in C, for example. (Jacobi
method is good for finding eigenvalues of a symmetric matrix)
[I can supply the Jacobi matrix code from NR in C if you like]

4c) the eigenvector associated with the smallest eigenvalue is
the vanishing point vector V

One word about numerical conditioning is in order. If you just use
image pixel coordinates directly, the problem will be horribly poorly
conditioned. There is a good paper by Hartley on this topic, title
something like "In defense of the Eight-point algorithm." If your
lines are spread out throughout the image, you can get approximately
the kind of well-conditioned approach he mentions by doing the
following.

1) translate by (-imageX/2, -imageY/2) so that (0,0) is in the

File: /nome/eeuser/Dropbox/HKUST wo...tion/vanishing_bob_collins.txt

Page 2 of 2

2)

--Bob

center of the image [I think Hartley's conditioning method would
take the center of mass of the line endpoints as the origin].

Scale coordinates so that the magnitude of all image point
homogeneous coordinates is roughly 1 [Hartley says how to do
this exactly, in his paper]. I used to do it approximately
by just setting the constant w, mentioned during the first
step of this algorithm, to be equal to half the image size
in pixels. So if you had a 256x256 image, then you would
have w = 128. IF the image width and height aren't the same,
just take the average or something, before dividing by two.

