
Report

Qt Tutorial

Author:
Manohar Kuse
http://kusemanohar.wordpress.com

Jan 25, 2012

http://kusemanohar.wordpress.com


Contents

1 Introduction 3
1.1 About Qt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Brief History of Qt . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Supported Platform . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Tools for Working with Qt . . . . . . . . . . . . . . . . . . . . 6
1.6 Licensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.7 Softwares that Use Qt . . . . . . . . . . . . . . . . . . . . . . 6

2 Installation 7
2.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Hello World with Qt . . . . . . . . . . . . . . . . . . . . . . . 7

3 Developing Applications with Qt Creator 10
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Creating a Hello Application . . . . . . . . . . . . . . . . . . 10

3.2.1 New Project . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.2 Design a Form . . . . . . . . . . . . . . . . . . . . . . 12
3.2.3 Defining Slots . . . . . . . . . . . . . . . . . . . . . . . 12

4 Layouts and Tab Order 14
4.1 Layouts in Qt . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1.1 Example Layout with Qt Designer . . . . . . . . . . . 14
4.2 Tab Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2.1 Setting Tab Order with Qt Creator . . . . . . . . . . . 17

5 Signals and Slots 18
5.1 Class Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.1.1 Example Class Definition . . . . . . . . . . . . . . . . 19
5.2 Signals and Slots . . . . . . . . . . . . . . . . . . . . . . . . . 19

1



Document by Manohar Kuse. http://kusemanohar.wordpress.com

5.2.1 Example with Slots . . . . . . . . . . . . . . . . . . . . 20

Page 2 of 21

http://kusemanohar.wordpress.com


Chapter 1

Introduction

1.1 About Qt

Qt is a a cross-platform application framework that is widely used for de-
veloping application software with a graphical user interface (GUI). Qt uses
a “write once, compile anywhere” with an Object Oriented approach. Qt
lets programmers use a single source tree for applications that will run on
Windows 98 to XP, Mac OS X, Linux, Solaris, HP-UX, and many other
versions of Unix with X11.

It is produced by Nokia’s Qt Development Frameworks division, which
came into being after Nokia’s acquisition of the Norwegian company Troll-
tech, the original producer of Qt.

Qt uses standard C++ but makes extensive use of a special code genera-
tor (called the Meta Object Compiler, or moc) together with several macros
to enrich the language. Qt can also be used in several other programming
languages via language bindings. Which means Qt can be used with other
languages such as C#, Java, Perl, Python, Ruby etc in addition to native
C++. It runs on all major platforms and has extensive internationalization
support. Non-GUI features include SQL database access, XML parsing,
thread management, network support, and a unified cross-platform API for
file handling.

1.2 Brief History of Qt

Haavard Nord and Eirik Chambe-Eng (the original developers of Qt and the
CEO and President, respectively, of Trolltech) began development of “Qt”
in 1991, three years before the company was incorporated as Quasar Tech-

3



Document by Manohar Kuse. http://kusemanohar.wordpress.com

nologies, then changed the name to Troll Tech and then to Trolltech. The
year 1994 began inauspiciously with the two young programmers wanting to
enter a well-established market, with no customers, an unfinished product,
and no money. Eirik and Haavard expected to need to develop the product
and start earning an income. [6]

The toolkit was called Qt because the letter Q looked appealing in
Haavard’s Emacs font, and ”t” was inspired by Xt, the X toolkit. The first
two versions of Qt had only two flavors: Qt/X11 for Unix and Qt/Windows
for Windows. The Windows platform was only available under a propri-
etary license, which meant free/open source applications written in Qt for
X11 could not be ported to Windows without purchasing the proprietary
edition. At the end of 2001, Trolltech released Qt 3.0, which added support
for Mac OS X. The Mac OS X support was available only in the propri-
etary license until June 2003, when Trolltech released Qt 3.2 with Mac OS
X support available under the GPL. In June 2005, Trolltech released Qt 4.0.
[1]

Nokia acquired Trolltech ASA on June 17, 2008 and changed the name
first to Qt Software, then to Qt Development Frameworks. Since then it
focused on Qt development to turn it into the main development platform
for its devices, including a port to the Symbian S60 platform. Version 1.0
of the Nokia Qt SDK was released on 23 June 2010. [4]

Since Trolltech’s birth, Qt’s popularity has grown unabated and contin-
ues to grow to this day. This success is a reflection both of the quality of Qt
and of how enjoyable it is to use. In the last decade, Qt has gone from being
a product used by a select few “in the know” to one that is used daily by
thousands of cus- tomers and tens of thousands of open source developers
all around the world.

1.3 Supported Platform

Qt is released by Nokia on the following platforms:

Linux/X11 Qt for X Window System (GNU/Linux, FreeBSD, HP-UX,
Solaris, AIX, etc.)

Mac OS X Qt for Apple Mac OS X. Support for applications on top of
Cocoa APIs.

Windows Qt for Microsoft Windows Platform.

Embedded Linux Qt for embedded platforms (PDA, Smartphone, etc.)

Page 4 of 21

http://kusemanohar.wordpress.com


Document by Manohar Kuse. http://kusemanohar.wordpress.com

Windows CE / Mobile Qt for Windows CE.

Symbian Qt for the Symbian platform. Symbian is the OS for modern
Nokia phones.

Maemo There are many applications already written for Maemo based
on the previous Internet Tablets (touch screen mini-computers). The
Nokia N900 also supports Qt.

Other than the above meintioned official platforms, third party ports
are also available for OpenSolaris (OS by Sun Microsystems), OS/2 (OS for
ATMs), I-Phone, Android, Amazon Kindle.

1.4 Modules

Following are the important modules which are part of Qt framework :

QtCore QtCore contains the core non-GUI classes, including the event
loop and Qt’s signal and slot mechanism. It also includes platform
independent abstractions for Unicode, threads, mapped files, shared
memory, regular expressions, and user and application settings.

QtGui QtGui module contains the majority of the GUI classes. These
include a number of table, tree and list classes based on the model-
view-controller design pattern. Also provided is a sophisticated 2D
canvas widget capable of storing thousands of items including ordinary
widgets.

QtMultimedia QtMultimedia module implements low-level multimedia func-
tionality.

QtNetwork QtNetwork module contains classes for writing UDP and TCP
clients and servers. It includes classes that implement FTP and HTTP
clients and support DNS lookups. Network events are integrated with
the event loop making it very easy to develop networked applications.

QtOpenGL QtOpenGL module contains classes that enable the use of
OpenGL in rendering 3D graphics.

QtSql QtSql module contains classes that integrate with open-source and
proprietary SQL databases. It includes editable data models for database
tables that can be used with GUI classes.

Page 5 of 21

http://kusemanohar.wordpress.com


Document by Manohar Kuse. http://kusemanohar.wordpress.com

QtXml QtXml module implements SAX and DOM interfaces to Qt’s XML
parser.

1.5 Tools for Working with Qt

Qt Assistant The Qt Help system. Contains class descriptions of all the
Qt modules and a mini how to use.

Qt Designer To design layouts of the user interfaces.

Qt Creator An IDE (Integrated Development Enviornment) for develop-
ing Qt.

Qt Linguist Assists the developer for translating the application program
to other languages like French, Dutch, German, Japnese etc.

1.6 Licensing

3 types of licenses main clause and cost

1.7 Softwares that Use Qt

Qt is a very popular, robust and multi-platform framework. This makes it a
very good choice as a tool-kit of choice for many software products. Few of
the popular software applications using Qt are – Adobe Photoshop Album,
Autodesk Maya, Doxygen, Google Earth, K3b, KBounce, Kate, Kile, Qt
Creator, Qt Designer, Qt Linguist, Qt Assistant, Scribus, Skype, Oracle
VirtualBox, VLC Media Player.

There are over 20,000 software products developed by Nokia alone and
many thousands developed by individuals, various software compaines and
so on. To get a bigger list of softwares in Qt, the reader may like to refer to
[7].

Page 6 of 21

http://kusemanohar.wordpress.com


Chapter 2

Installation

This chapter explains the reader the basics of installation of Qt development
suit. In specific, this chapter gives the instructions to install Qt Creator, Qt
Linguist, Qt Designer and Qt Assistant and also help you run your first Qt
program. The author of this document has used Linux (Ubuntu 10.04) for
testing. However, running Qt on Microsoft Windows and OS X is almost
similar.

2.1 Installation

The latest version of Qt Creator can be downloaded from Qt download page
[7]. Download the approriate version for your platform. In case you are
using Ubuntu, Qt development packages can also be installed with ‘Synaptic
Package Manager’. The name of the package is ‘qt4-dev-tools’. Incase the
package is not displayed in the list try ‘Reload’. With this the installation
is complete. Incase, you have any other issue refer to the Official Qt Forum
for helping [2].

2.2 Hello World with Qt

Once the installation is complete, you are ready to run your first Qt Gui
Program. In a text editor like gedit, paste the following code. Save the file
as, for example ‘main.cpp’ Make sure, you make a new directory for it.

1 #include <QApplication>

2 #include <QLabel>

7



Document by Manohar Kuse. http://kusemanohar.wordpress.com

(a) Synaptic Package Manager

Figure 2.1: Installation with Synaptic Package Manager

3 int main(int argc, char *argv[])

4 {

5 QApplication app(argc, argv);

6 QLabel *label = new QLabel("Hello Qt!");

7 label->show();

8 return app.exec();

9 }

Lines 1 and 2 include the definitions of the QApplication and QLabel
classes. For every Qt class, there is a header file with the same name (and
capitalization) as the class that contains the classs definition.

Line 5 creates a QApplication object to manage application-wide re-
sources. The QApplication constructor requires argc and argv because Qt
supports a few command-line arguments of its own.

Line 6 creates a QLabel widget that displays Hello Qt!. In Qt and
Unix terminology, a widget is a visual element in a user interface. Buttons,
menus, scroll bars, and frames are all examples of widgets. Widgets can
contain other widgets, for example, an application window is usually a wid-
get that contains a QMenuBar, a few QToolBars, a QStatusBar, and some
other widgets. Most applications use a QMainWindow or a QDialog as the
application window, but Qt is so flexible that any widget can be a window.
In this example, the QLabel widget is the application window.

Page 8 of 21

http://kusemanohar.wordpress.com


Document by Manohar Kuse. http://kusemanohar.wordpress.com

Line 7 makes the label visible. Widgets are always created hidden, so
that we can customize them before showing them, thereby avoiding flicker.
Line 8 passes control of the application on to Qt. At this point, the program
enters the event loop. This is a kind of stand-by mode where the program
waits for user actions such as mouse clicks and key presses. User actions
generate events (also called “messages”) to which the program can respond,
usually by executing one or more functions. For example, when the user
clicks a widget, a “mouse press” and a “mouse release” event are generated.
In this respect, GUI applications differ drastically from conventional batch
programs, which typically process input, produce results, and terminate
without human intervention.

To compile the program through command-line do,

qmake -project

With this, ‘qmake’ tries to generate a ‘.pro’ (Project) file. Next do,

qmake

This command generates an automatic makefile for the project. Now to
actually compile the program do,

make

This shall generate the executable file ‘main’. Execute it. This shall
show the window as shown in figure 2.2.

./main

(a) Hello World Program

Figure 2.2: Showing Window Display for Hello World Program

Page 9 of 21

http://kusemanohar.wordpress.com


Chapter 3

Developing Applications
with Qt Creator

3.1 Introduction

Qt Creator is a cross-platform C++ integrated development environment
which is part of the Qt SDK. It includes a visual debugger and an inte-
grated GUI layout and forms designer. The editor’s features includes syntax
highlighting and auto-completion. Qt Creator uses the C++ compiler from
the GNU Compiler Collection on Linux and FreeBSD. On Windows it can
use MinGW or MSVC with the default install and can also use cdb when
compiled from source.

This chapter helps you to use the creator to develop basic GUI appli-
cations and also explains the concepts behind them. In the opinion of the
author, creating Qt GUI application is much easier with Qt creator with its
form designer compared to hand coded applications.

Qt being a C++ based Object Oriented Frame-work, basics knowledge
about concepts of object oriented programming would be helpful. However
those users not acquainted with concepts like ‘class’, ‘inheritance’, ‘encap-
sulation’ may get basic information and syntax in C++ by following the
appendix on C++ programming. Readers may also get themselves familiar
with C++ by following the web tutorial [5].

3.2 Creating a Hello Application

This section serves as an guided tour for creating a simple GUI application
in Qt with the help of Qt creator. The application shall have a text-box,

10



Document by Manohar Kuse. http://kusemanohar.wordpress.com

(a) Qt Creator

Figure 3.1: Qt Creator

wherein the user has to enter his name. There would be four buttons saying
‘Good Morning Qt’, ‘Good Afternoon Qt’, ‘Good Evening Qt’ and ‘Good
Night Qt’. The application shall wish the same to the user by his name.
For example, when the user(name of the user is Manohar) clicks the button
‘Good Morning Qt’ there could be a message-box which shall say ‘Good
Morning Manohar’. Appropriate error message shall be shown, if the user
does not enter his/her name.

3.2.1 New Project

Each GUI application is made as a project in Qt Creator. The start screen
of Qt creator would look as in figure 3.1. Click on menu ‘File’ followed by
‘New File or Project’. In the dialog box select, ‘Qt GUI Application’. In
the next step give a project name and location for project. In the ‘Select
Modules’ do not select anything, just click next. These shall be useful when
you learn to use more modules for example to connect to MySql Database
or Network Programming. Give an appropriate class name and select base
class as ‘QWidget’. After this step, your project should be created. Now
we can start implementing it. Let us assume that, the class name was given
‘MainWindow’

Page 11 of 21

http://kusemanohar.wordpress.com


Document by Manohar Kuse. http://kusemanohar.wordpress.com

3.2.2 Design a Form

Every Gui application has a form. First step is to create a form. This can be
done by clicking on ‘Forms’ in the left pane. Click on the file ‘mainwindow.ui’
in the left pane. This should open a GUI building window in Qt creator. On
the left pane of gui designer, are the available (or built-in) widgets. These
can be draged-and-droped in the application.

For our application we shall require a ‘LineEdit’, ‘Label’ and four ‘Push-
Buttons’. Drag and drop these widgets into our application as shown in
figure 3.2.2.

(a)

Figure 3.2: Qt Creator, designing a form

The default text in ‘PushButton’s and ‘Label’ can be changed by double
clicking on those widgets. A demo of the form can be scene by pressing
‘CTRL+ALT+R’. The buttons would of-course not work.

3.2.3 Defining Slots

Slots are functions which are automatically called when an action is per-
formed (for example clicking a button). Now to display a message on click
on the buttons we have to define custom slots. To do this, right-click on
that button and click-on ‘Go to Slot’. This automatically creates a function
which shall be called when the button is clicked. Now in this function we
want a pop-up to display a message.

Page 12 of 21

http://kusemanohar.wordpress.com


Document by Manohar Kuse. http://kusemanohar.wordpress.com

In Qt a pop-up can be displayed by use of the in-built class ‘QMessage-
Box’. To do this go to the file ‘mainwindow.h’ and at the top,

#include <QMessageBox>

Now come back to the slot and write the following code,

1 QString str = ui->lineEdit->text();

2 if( str.length() == 0 )

3 {

4 QMessageBox::critical(this, tr("Error"),

tr("Please enter your name"));

5 }

6 else

7 {

8 QMessageBox::information(this, tr("Hello"),

tr("Good Morning ")+str );

9 }

Similar step has to be done with all the buttons. Line 1 of this code-
snippet defines a string. This string loads the text from the line-edit. All
the Gui elements are encapsulated in the variable ‘ui’. Then, on line 2,
if length is zero (0) we show an error message or else we show the ‘Good
Morning’ along with the name of the user. The application would run as
shown in figure 3.2.3. To compile and run the application, click on the green

(a) (b)

Figure 3.3: Qt Creator, designing a form

colored forward arrow button on bottom left side of Qt creator. With this,
the application is built and the executable is run.

Page 13 of 21

http://kusemanohar.wordpress.com


Chapter 4

Layouts and Tab Order

This chapter introduces the reader about layouts in Qt. It also goes on to
explain how to set layouts and how to manage layouts with ‘Form Editor in
Qt Creator’ (or ‘Qt Designer’). The later part of the chapter also explains
how to set tab order for the widgets with ‘Form Editor in Qt Creator’ (or
‘Qt Designer’).

4.1 Layouts in Qt

The Qt layout system provides a simple and powerful way of automatically
arranging child widgets within a widget to ensure that they make good use of
the available space. Qt includes a set of layout management classes that are
used to describe how widgets are laid out in an application’s user interface.
These layouts automatically position and resize widgets when the amount
of space available for them changes, ensuring that they are consistently
arranged and that the user interface as a whole remains usable. The Qt
layout system provides four layout classes, viz. Horizontal Layout (figure
4.1(a)), Vertical Layout (figure 4.1(b)), Grid Layout (figure 4.1(c)) and Form
Layout (4.1(d)).

4.1.1 Example Layout with Qt Designer

This section shall demonstrate to the reader a layout for the simple applica-
tion developed in previous chapter. We shall have four horizontal layouts put
into a vertical layout. Spacer widgets are used as space occupier whenever
required. To achieve it, apply the following steps :

14



Document by Manohar Kuse. http://kusemanohar.wordpress.com

(a) Horizontal Layout

(b) Vertical Lay-
out

(c) Grid Layout

(d) Form Layout

Figure 4.1: Available Layouts in Qt Layout System

1. Place the widget approximate as shown in figure 4.2(a). Don’t worry
about exact position.

2. Select the two items in a row. Right click, select ‘layout’ then ‘hori-
zontal layout’.

3. Repeat this process, for each of the items in a row. After this is done
for each row, the form editor should look as in figure 4.2(b)

4. Now, arrange these four horizontal layout into one vertical layout. This
can be achieved by holding CTRL and clicking each of these. Then
right click, layout, vertical layout.

5. Next step is to arrange this vertical layout as a single layout for the

Page 15 of 21

http://kusemanohar.wordpress.com


Document by Manohar Kuse. http://kusemanohar.wordpress.com

background. This has to be achieved by right-click the background
then click layout and then horizontal layout.

(a) Approximate Layout

(b) After step 3

Figure 4.2: Step by step example layout

By following the above steps, the reader should be able to make use of
the layout system in Qt Creator. It might be interesting to mention that
layouts can be thought as containers for widget and the idea is to put all
the widget and layout into a big container. Another point note worthy is
the use for spacers (vertical and horizontal spacers) for putting a free space
wherever required.

4.2 Tab Order

Many users expect to be able to navigate between widgets and controls using
only the keyboard. Qt lets the user navigate between input widgets with
the Tab and Shift+Tab keyboard shortcuts. The default tab order is based
on the order in which widgets are constructed. Although this order may be

Page 16 of 21

http://kusemanohar.wordpress.com


Document by Manohar Kuse. http://kusemanohar.wordpress.com

sufficient for many users, it is often better to explicitly specify the tab order
to make your application easier to use.

4.2.1 Setting Tab Order with Qt Creator

To enter tab order editing mode, open the Edit menu and select Edit Tab
Order. In this mode, each input widget in the form is shown with a number
indicating its position in the tab order. So, if the user gives the first input
widget the input focus and then presses the tab key, the focus will move to
the second input widget, and so on.

The tab order is defined by clicking on each of the numbers in the correct
order. The first number you click will change to red, indicating the currently
edited position in the tab order chain (refer figure 5.2.1). The widget as-
sociated with the number will become the first one in the tab order chain.
Clicking on another widget will make it the second in the tab order, and so
on.

Repeat this process until you are satisfied with the tab order in the form
– you do not need to click every input widget if you see that the remaining
widgets are already in the correct order. Numbers, for which you already
set the order, change to green, while those which are not clicked yet, remain
blue.

(a)

Figure 4.3: Tab Order

If you make a mistake, simply double click outside of any number or
choose Restart from the form’s context menu to start again. If you have
many widgets on your form and would like to change the tab order in the
middle or at the end of the tab order chain, you can edit it at any position.
Press Ctrl and click the number from which you want to start. Alternatively,
choose Start from Here in the context menu.

Page 17 of 21

http://kusemanohar.wordpress.com


Chapter 5

Signals and Slots

This chapter teaches the reader the scene behind the screens in developing a
full-fledged Qt Application. This chapter requires the reader to be familiar
with terms and usage of object oriented programming especially – classes,
inheritance, access modifiers (public, private), constructor and destructor
and virtual functions. This chapter also involves writing of code.

This chapter starts with the class design for the Qt Application (multiple
inheritance approach [3]). Then the chapter shall go on to explain in depth
the concept about signals and slots in Qt. Toward the end of the chapter,
mouse and keyboard event usage tutorial is presented.

5.1 Class Design

This section walks you through the multiple inheritance approach to design-
ing an application in Qt. This is not the only approach. Other approaches
can be seen as described in [3]. However, in the opinion of the author, Qt
Application design by means of multiple inheritance is a better and clearer
approach. The advantage being that, all the widgets used in the form are
encapsulated as an object (this object is name ‘ui’ by Qt Creator) in the
parent class and can be accessed from the derived class.

Forms created with Qt Designer can be sub-classed (inheritance) along
with a standard QWidget-based class. This approach makes all the user in-
terface components defined in the form directly accessible within the scope of
the subclass, and enables signal and slot connections to be made in the usual
way with the connect() function. The Qt creator does this automatically.
This new class is created as files ‘mainwindow.h’ and ‘mainwindow.cpp’.
This can be edited to create your own custom Qt application. The header

18



Document by Manohar Kuse. http://kusemanohar.wordpress.com

files have the definitions for the functions and variables of the class. And
the ‘.cpp’ file has the implementation. As a Qt application programmer,
you have to make definitions of your own function (also slots) and connect
these slots to the signals emitted by the objects in ‘ui’ or any other object.

5.1.1 Example Class Definition

Lets us try writing some code now. We shall try to programatically set
text in the lineEdit. Since line-edit is a object (object name can be set
from Form Editor in Qt Creator) of the class QLineEdit, we have to lookup
a function to achieve this in Qt Assistant. The function ‘setText()’ is a
member function of QLineEdit class.

In the constructor of out derived class (mainwindow.cpp) insert the fol-
lowing line of code.

ui->lineEdit->setText("Hello Text");

Now run the program to see, the text is already set when the program
executes. The user is suggested to experiment with other such functions of
the QLineEdit or any other object. The functions along with their usage
not can be found in Qt Assistant.

5.2 Signals and Slots

The signals and slots mechanism is fundamental to Qt programming. It
enables the application programmer to bind objects together without the
objects knowing anything about each other. This chapter shall give a high-
light at the mechanism more closely.

Slots are almost identical to ordinary C++ member functions. They
can be virtual, they can be overloaded, they can be public, protected, or
private, they can be directly invoked like any other C++ member functions,
and their parameters can be of any types. The difference is that a slot can
also be connected to a signal, in which case it is automatically called each
time the signal is emitted. The signals and slots are generally connected in
the constructor of the class. The syntax for connect() is

connect(sender, SIGNAL(signal), receiver, SLOT(slot));

‘sender’ is the pointer to the object which sends the ‘signal’. ‘receiver’
is the pointer to the object which catches the signal and the ‘slot‘ is called
automatically.

Page 19 of 21

http://kusemanohar.wordpress.com


Document by Manohar Kuse. http://kusemanohar.wordpress.com

5.2.1 Example with Slots

In this example, we shall make a button which shall serve as a reset button.
Which mean, when the button is clicked we need to set the text in line-edit
to blank.

To achieve this, we shall create a custom slot (named clearLineEdit())
and connect it to the signal ‘clicked()’ which is emitted by the button when
the button is clicked. We shall have to make a new PushButton and change
it’s object name to ‘resetButton’ (This can be easily done with Form Editor).

Following code goes in the header file as part of class declaration.

//class declaration

private slots:

void clearLineEdit();

Following code goes in the ‘.cpp’ file as part of function definition.

//slot defination

void MainWindow::clearLineEdit()

{

ui->lineEdit->setText("");

}

Following code goes in the constructor of the class.

connect( ui->resetButton, SIGNAL(clicked()),

this, SLOT(clearLineEdit()));

Now, the program is ready and when run, we see that the text in line-edit
gets cleared when we click the ‘Reset’ button.

(a)

Figure 5.1: Reset Button

Page 20 of 21

http://kusemanohar.wordpress.com


Bibliography

[1] Jasmin Blanchette and Mark Summerfield. C++ GUI Programming with
Qt 4. Prentice Hall.

[2] Qt Forum. Qt forum installation problems. http:

//www.qtforum.org/forum/54/installing-qt.html?s=

e674082d31c324ffbdd38388558ce22bfb3c2af3.

[3] TrollTech INC. Using a component in your qt application.
http://doc.trolltech.com/4.2/designer-using-a-component.

html#the-multiple-inheritance-approach.

[4] Qt Official Site. Qt official news. http://qt.nokia.com/about/news.

[5] Juan Soulie. C++ tutorial. http://www.cplusplus.com/doc/

tutorial/.

[6] Wikipedia. Qt (framework). http://en.wikipedia.org/wiki/Qt_

(framework).

[7] Wikipedia. Software that uses qt. http://en.wikipedia.org/wiki/

Category:Software_that_uses_Qt.

21

http://www.qtforum.org/forum/54/installing-qt.html?s=e674082d31c324ffbdd38388558ce22bfb3c2af3
http://www.qtforum.org/forum/54/installing-qt.html?s=e674082d31c324ffbdd38388558ce22bfb3c2af3
http://www.qtforum.org/forum/54/installing-qt.html?s=e674082d31c324ffbdd38388558ce22bfb3c2af3
http://doc.trolltech.com/4.2/designer-using-a-component.html#the-multiple-inheritance-approach
http://doc.trolltech.com/4.2/designer-using-a-component.html#the-multiple-inheritance-approach
http://qt.nokia.com/about/news
http://www.cplusplus.com/doc/tutorial/
http://www.cplusplus.com/doc/tutorial/
http://en.wikipedia.org/wiki/Qt_(framework)
http://en.wikipedia.org/wiki/Qt_(framework)
http://en.wikipedia.org/wiki/Category:Software_that_uses_Qt
http://en.wikipedia.org/wiki/Category:Software_that_uses_Qt

	Introduction
	About Qt
	Brief History of Qt
	Supported Platform
	Modules
	Tools for Working with Qt
	Licensing
	Softwares that Use Qt

	Installation
	Installation
	Hello World with Qt

	Developing Applications with Qt Creator
	Introduction
	Creating a Hello Application
	New Project
	Design a Form
	Defining Slots


	Layouts and Tab Order
	Layouts in Qt
	Example Layout with Qt Designer

	Tab Order
	Setting Tab Order with Qt Creator


	Signals and Slots
	Class Design
	Example Class Definition

	Signals and Slots
	Example with Slots



