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ABSTRACT

The ability to localize in the co-ordinate system of a 3D model
presents an opportunity for safe trajectory planning. While SLAM-
based approaches provide estimates of incremental poses with re-
spect to the first camera frame, they do not provide global localiza-
tion. With the availability of mobile GPUs like the Nvidia TX1 etc.,
our method provides a novel, elegant and high performance visual
method for model based robot localization.

We propose a method to learn an environment representation
with deep residual nets for localization in a known 3D model rep-
resenting a real-world area of 25,000 sq. meters. We use the power
of modern GPUs and game engines for rendering training images
mimicking a downward looking high flying drone using a photo-
realistic 3D model. We use these images to drive the learning loop
of a 50-layer deep neural network to learn camera positions. We next
propose to do data augmentation to accelerate training and to make
our trained model robust for cross domain generalization, which has
been verified with experiments. We test our trained model with syn-
thetically generated data as well as real data captured from a down-
ward looking drone. It takes about 25 miliseconds of GPU process-
ing to predict camera pose. Unlike previous methods, the proposed
method does not do rendering at test time and does independent pre-
diction from a learned environment representation.

Index Terms— 3D model-based localization, residual network
learning, rendered training data, pose regression.

1.INTRODUCTION

Availability of active sensors has propelled research and develop-
ment in robot motion planning and navigation [1]. At the core, avail-
ability of a 3D point cloud of the current environment and the robot’s
current position at sufficiently high frame rates are required for safe
planning and control of mobile robots. Although, active sensors like
laser range finders and LiDAR are able to provide real-time 3D point
clouds of the environment, the strict pay-load constraints on plat-
forms like quad-rotors, difficulty of frequent camera calibration for
stereo camera system and non usability of RGB-D sensors in bright
outdoor environments makes a monocular camera with an inertial
measurement unit (IMU) an attractive sensor suite.

There have been recent efforts towards online camera-based 3D
reconstruction [2, 3, 4, 5]. However, though these methods provide
reasonable structure of the environment, their major drawback is that
they have a very high computational burden. Another issue is inac-
curately mapped points, which make motion planning unsafe. On
the other hand, offline approaches to 3D reconstruction are a more
mature technology. Numerous commercial and open source tools
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are available, including Altizure1, GoogleMaps, insight3d2 etc. 3D
models produced with offline processing (as opposed to online) are
more suitable for the proposed render-and-learn approach to learning
environment representation.

In recent years advances in deep learning [6] have been an en-
abler for learning representations for tasks ranging from image cat-
egorization to language modeling, speech analysis and so on [7].
These developments coupled with availability of faster and faster
GPUs have motivated us to develop a method to learn an environ-
ment representation for localization. This paper presents a method
for 3D-model based global localization from monocular views. We
refer to the proposed method as MapNets.

Related Work: Kendall et al. [8] introduced a re-localization
system based on a convolutional neural network to regress the cam-
era pose. However, their method did not take advantage of the 3D
structural information from the reconstruction and had limited data
to train the neural network.

Qiu et al. [9] proposed a method in which an edge alignment of
the captured monocular view is done with a view rendered from a 3D
model on the go. The major drawback of this method is that it needs
to render a view and its depth at test time, which has a high computa-
tional burden. It also needs a good initialization, which was set with
GPS in their experiments. Thus their method cannot work on kidnap
like scenario. Yet another related work is Ok et al. [10], which the
authors attempt to align the captured view in the 3D model. Since
they rely on an RGB-D sensor, this method cannot be used outdoors.
Further as illustrated in Fig 1. of [9], the method by Ok et al. [10]
may not be able to estimate relative poses with difference between
virtual rendered view and real view.

Contributions: In contrast to previous methods, in our proposed
simple and efficient approach, we do not need to store the 3D model
at test time. Instead our learned model is enough to predict the pose
given the input captured image. Our main contributions are summa-
rized as below:

• We propose a deep residual learning framework to model en-
vironment representation.

• To generate training data we propose to do monte-carlo sam-
pling of camera-pose (spatial + yaw, 4-DOF) and render
views from a 3D model.

• Next to make the model and to help it train faster, we used
census transform [11] as augmented data to model local tex-
ture and to aid training and cross domain generalization.

2.PROPOSED FRAMEWORK : MAPNETS

In this section we briefly describe the components of our system.
In particular, we propose to use rendered views for training, as de-
scribed in Sect. 2.1. Next we describe the network architecture in

1https://www.altizure.com
2http://insight3d.sourceforge.net



Fig. 1. The structure of our proposed MapNets to learn the environment representation.

Sect. 2.2. Details of the optimization process and our proposed fea-
ture augmentation is covered in Sect. 2.2.1 and Sect. 2.3 respec-
tively. For a quick overview of our system, refer to Fig. 1.

2.1.View Rendering

Modern game engines are able to provide upward of 100 fps
(320x240 images) rendering. Inside a game engine, the world is
represented using polygonal meshes. This provides a good source of
training data (as illustrated in Fig. 1) for powerful and data-hungry
deep neural networks to learn a model of the environment to predict
camera pose. The 3D model used in our experiments was created
with the Altizure system using drone video footage of about 20
minutes. We used the panda3d3 game engine for rendering.

We propose Monte-Carlo sampling of camera-pose (spatial +
yaw, 4-DOF) and render views at these locations. These rendered
images are fed to a deep neural network along with the camera pose
at render time as labels for learning the representation. Essentially,
the feed drives a stochastic gradient descent process to optimize a
cost function, which is detailed in Sect. 2.2.1.

2.2.Network Architecture

In this work, we propose a framework which outputs a 4-DOF pre-
diction κ (spatial + yaw) inferring camera pose from a downward
looking drone-captured scene. We refer to our proposed framework
as MapNets. The logic behind predicting 4-DOF as against 6-DOF
is that, 4-DOF provides for a minimal dimensional prediction space,
which cannot be predicted drift free from just the IMU measure-
ments.

Furthermore, for a practical system, the pitch and roll angles
(usually small for a downward looking drone) are more easily and
accurately estimated using IMUs. We also note that since we use
only a monocular view at test time, it is possible to predict Z ac-
curately only as long as the difference between the rendering cam-
era’s field of view (FOV) and the real camera’s FOV is small. In the
case that the testing camera’s FOV is different from the rendering
camera’s FOV used for learning, image warping/ cropping may be
required to compensate for the difference of FOV.

Let the function f (fθ : <c×n×m 7→ <4 ) be the environment
representation. Where n and m are the input image dimensions,
and c is the number of input channels. f is parameterized by θ ∈
<p. The input of our net is the intensity image and the augmented
channels. For a discussion of the proposed feature augmentation for
domain adaptation, refer to Sect. 2.3. Let the input image be denoted
by x, the augmented channels be denoted by x̃ and κ ∈ <4 be the
output of the neural function. Thus, κ = fθ(x, x̃)

Recently proposed residual nets (ResNets) provide good gener-
alization properties and a high capacity to learn complicated map-
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pings. Residual networks [12, 13] are neural networks that consist
of trainable convolutional layers added to the input via the shortcut
connection. The non-linear linear unit (ReLU) is used as the activa-
tion function. We make use of the bottleneck ResNet units, which
have the advantage of having fewer parameters compared to 2-layer
3x3 kernel convolutional units. Each of our ResNet units has 3 con-
volutional layers, and we have 17 such units (51 layers in all). We
perform a max-pooling after every 3 ResNet units while doubling
the number of output filters after every max-pooling. After the last
layer, the residual net produces a 2048-dimensional vector. This is
fed into 2-layers fully connected network to produce a 4-DOF pose.

2.2.1.Optimization

Let κ̂ be the ground truth pose vector. Note that, this is the same
as the camera pose used to render current view. Our objective is
to search for a neural function which can predict κ̂ given the input
images. W is a diagonal weighting matrix to control the relative
importance of fitting the spatial predictions, viz. X, Y and Z versus
fitting the yaw angle. We empirically set W as diag(1, 1, 1, 0.1).
which means, a fitting loss of about 1 meter spatially is as bad as a
fitting loss of 10 degrees for the yaw angle. We thus make use of the
regression loss functions as

loss =
b∑
i=0

‖W(fθ(xi, x̃i)− κ̂)‖2 + λ ‖θ‖2 . (1)

In order to minimize the neural function, Eq. 1 with respect to pa-
rameters θ, we use stochastic gradient descent (SGD) with momen-
tum.4 We add a parameter norm penalty only for the weight terms
as a regularization term in our cost function (Eq. 1), λ = 0.006.
SGD draws a batch, of size b, of random samples of the training
space to compute the approximate gradient using back propagation.
It then updates the parameters in a negative direction of the gradi-
ents scaled by step size [7]. In our experiments we use a batch size
of b = 16, which fills up about 11 GB of the GPU memory. For
SGD, we initialize the training parameters θ as outlined in He et al.
[14]. Recently introduced batch normalization [15] accelerates the
training by reducing the internal covariate shift by making normal-
ization from batch statistics. We make use of batch normalization at
every convolutional layer to accelerate the training.

To further aid the optimization process, make it robust and avoid
overfitting, we perform random intensity alterations of the input im-
age and add noise (Gaussian and s&p). Further, we also do training
with slight perturbation (±5o) along the pitch and roll axis. Previ-
ously in image categorization tasks it has been observed that such
perturbation helps the model to generalize better on the test set [16].

4We use caffe (http://caffe.berkeleyvision.org/) to perform training.



2.3.Feature Augmentation for Domain Adaptation

Cross domain generalization is a major challenge in learning-based
approaches. Motivated by recent success of frustratingly easy Do-
main Adaptation (DA) [17] approaches by Sun et al. [18], (origi-
nally proposed by Daume et al. [19]), we make an attempt towards
domain adaptation by feature augmentation. This approach has been
experimentally found to be effective.

As a first step, we propose to z-normalize (subtract mean and
divide standard deviation) the incoming data and to use a linear scal-
ing of the input data for effective training. This was realized using
the Batch-Normalization frame work, ie. the 1st BN-layer reduces
just to the learnable linear transformation scaling as the input data
is already z-normalized. Faster convergence was experimentally ob-
served using this approach, which is illustrated in Fig. 1.

Next, given an input 3-channel image, we propose to augment
the input space by a representation which captures structural and
textural information. For a representation of local texture we pro-
pose to use the census transform [11] and we use the canny edges
to represent the structural information on the image with adaptive
thresholds. The intuition for choosing these transforms is their in-
variance to changes in illumination, lighting and shading of the ob-
served environment.

We note that although the augmentation of edges might be re-
dundant, convolutional networks cannot learn a transform similar to
the census transform, which is a non-linear combination of neigh-
boring pixels. We experimentally demonstrate that augmenting the
features aids the learning process and gives robust estimation perfor-
mance.

Intuitively speaking, this augmented structure learns from a
combination of 3 hypotheses and guides the optimization process.
This also tends to fit the census transform and the edges, which are
relatively invariant towards changes in capturing conditions. It is
worth nothing that although the network is able to learn with just
the intensity image (1-channel only) it does not seem to generalize
well over video captured during different times/exposure. However
a network trained with just the census transform image or the edges,
does not learn at all (training error does not go down), possibly due
to insufficient information in the census transform and edges alone.

Finally, at test time, we load the learned weights and the global
estimates of means and variances at every layer along with scal-
ing parameters used for batch normalization. The input image is
z-normalized, followed by augmented channels computation from
1-channel representation of the input image.

3.EXPERIMENTS

Implementation Details: For the computations, our workstation
consists of Intel i7-6800K CPU @ 3.4 GHz and an Nvidia Titan
X (Pascal) with 12 GB of GPU memory. The mesh model used for
training consists of 704586 vertices and 1381021 faces (triangles)
representing a real world area of about 25,000 square meters.

Without data augmentation, the training is done until there was
no change in training loss function (See Fig. 3, ie. about 300k it-
erations). In case of training with data augmentation, training was
performed for 220k iterations. The learning rate was dropped to half
each time the average training loss (over 1000 iterations) drops be-
low a threshold. It took about 300 mili-seconds per iteration with
batch size of 16. We observe that the loss functions drops faster
in case of data augmentation, which shows the effectiveness of the
technique.
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Fig. 2. Showing log-loss as iteration progress. Thick lines denote
training with proposed augmentation (WA). Thin lines correspond
to training without augmentation (W/o A).

For testing, our flight platform was DJI-Matrice-100 and we use
the DJI-OnBoard SDK for logging the camera and flight data (GPS).
We also note that at the test time, about 400 MB of GPU memory is
required for prediction.

Evaluation from Synthetic Trajectories: We manually set a
few way-points and construct a spline passing through these points
and render the views along this trajectory, thereby simulating a
downward looking drone. Fig. 3 shows the results and compare
the prediction with ground truth (render positions). See Table 1 for
quantitative results.

Evaluation from Real Captured Scenes: We also test our
trained model using data captured from a drone with a stabilized
downward facing camera. The testing is done offline on the desktop
computer and takes about 25 ms per frame. However, in a practical
system, with availability of embedded GPUs, this can also be done
onboard with slight performance penalty. The result is shown in Fig.
4 (green tracks) along with GPS tracks (in pink).

Although the X and Y are observed with high accuracy, jitter of a
few meters is observed for the prediction of Z. This is to be expected
as the video was captured monocular and at high altitudes (about 65
m).

Another issue is with the differences in the FOV of the render
camera (used for training) and the real camera. Although care is
taken to set the FOV of the virtual render camera as closely as possi-
ble to real camera (about 80o), it is natural to have some uncertainty,
which might also be another cause of inaccuracies in the depth (Z)
prediction.

Quantitative Result/Effectiveness of Feature Augmentation:
Table 1 shows the root mean squared error (RMS) for each trajectory.
It is computed using corresponding ground truth (virtual camera po-
sitions for synthetic trajectories and GPS tracks for real scenes), ie.
the RMS value. We tabulate the performance with the proposed fea-
ture augmentation and without feature augmentation. We observe
the lower RMS values for model trained with data augmentation
compared to the model trained without data augmentation, hence
proving its effectiveness.

Further, GPS was used to compare these trajectory which itself
suffers from inaccuracies of a few meters. Also measurements of
yaw cannot be observed with GPS and hence cannot be compared in
this case. Furthermore, the 3D model’s co-ordinate system is only
approximately aligned to the GPS co-ordinate system and there is
variation in GPS axes by a few degrees for each run. All these fac-
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Fig. 3. (a) Synthetically generated helical trajectory ie. ground truth
GT (green) and corresponding predictions using the trained Resnet
(pink) overlay on the 3D model. (b) plot X(top left), Y(top right),
Z(bottom left) and yaw(bottom right) vs time. Best viewed in color.
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(b) Plot of XYZ and Yaw vs time

Fig. 4. (a) GPS track of the drone (pink) and the predictions made
using the trained model (green). The 3D model is plotted for ref-
erence only. (b) plots X(top left), Y(top right), Z(bottom left) and
Yaw(bottom right) vs time. Best viewed in color.

tors make the RMS value comparison for real trajectories with GPS
meaningless. We still report the RMS values for reference in Table
1.

Without Augmentation With Augmentation

File X Y Z Yaw X Y Z Yaw

Bag11* 6.68 11.46 7.95 N/A 6.85 8.13 6.52 N/A
Bag10* 10.94 13.11 31.30 N/A 8.10 12.56 31.23 N/A
Bag8* 6.517 21.03 6.74 N/A 12.94 25.5 5.28 N/A
Helix 1.16 1.72 1.44 2.55 0.88 1.33 1.11 1.71
BigM 2.13 2.39 2.02 2.70 1.28 1.57 1.44 1.99
yaw only 1.04 1.31 1.01 2.54 0.56 1.15 0.92 1.23
flat h 1.08 1.45 1.50 2.65 0.76 1.24 1.11 1.75

Table 1. RMS values between predictions with trained networks and
ground truth. ‘*‘ marked denote real sequences, whose comparison
is made with GPS tracks

4.CONCLUSION AND FUTURE WORK

We have proposed a 50-layer residual convolutional neural network
to learn a 4-DOF pose regression. We generate the training im-
ages using a 3D model and a game engine. Experimentally, we
have found that the proposed data augmentation used to model lo-
cal texture is effective in the sense that it helps the network to learn
faster and gives robust performance during test time. Our method,
provides a simple, parameter-free and high-performance method to
predict camera pose for a high flying drone.

While SLAM-based approaches provide estimates of incremen-
tal poses with respect to the first camera frame, they do not provide
global localization. The proposed method is different from previous
approaches to global localization [9, 10] as we do not need to render
images at test time. Also, since our method does independent pre-
dictions for each frame, it does not accumulate errors from previous
incorrect predictions.

Using previously predicted poses to infer the current pose while
fusing measurements from other modalities, like IMUs (which suffer
from long-term drift) and incremental pose estimates from advances
in SLAM [20] could be a future direction to make a closed con-
trol loop navigation and planning module with neural processing for
global localization.
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[5] Thomas Schöps, Torsten Sattler, Christian Häne, and Marc
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